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Crystals of the recently published [Bolotina, Kirschbaum &

Pinkerton (2005). Acta Cryst. B61, 577–584] triclinic (P1)

structure of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (�-NTO)

occur as fourfold twins. There are Z0 = 4 independent

molecules per asymmetric unit. We show that the structure

contains layers with 2-periodic layer-group symmetry p21/b 1

(1). This symmetry is lost through the stacking of the layers,

which is a possible explanation for Z0 = 4. A layer can assume

four different but equivalent positions with respect to its

nearest neighbor. Twinning arises through stacking faults and

is an instructive example of the application of order–disorder

theory using local symmetry operations. The near-neighbor

relations between molecules remain unchanged through all

twin boundaries. The four structures with maximum degree of

order, one of which is the observed one, and the family

reflections common to all domains are identified. Rods of

weak diffuse scattering confirm the stacking model.
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1. Introduction

The structure and twinning of the energetic material 5-nitro-

2,4-dihydro-1,2,4-triazol-3-one (�-NTO) has recently been

published by Bolotina et al. (2005), in the following referred to

as BKP. The space group is P1 with four molecules of identical

dimensions in the asymmetric unit, Z0 = 4, Z = 8. The trans-

formation of the triclinic primitive cell by a = at, b = bt, c = at +

bt + 2ct gives an I-centered cell (cell 5 of BKP) with near-

orthorhombic metric, � = 90.030, � = 89.600, � = 89.848�. For

this cell, we use the non-standard space-group symbol I1, Z =

16. The two investigated crystals were both four-component

twins. Twin elements with respect to the I-cell are twofold

rotations about [100], [010] and [001], or equivalently reflec-

tions on (100), (010) and (001). The volume ratios of the

domains in two crystals were refined to 55:9:20:16 and

27:19:29:25. Other volume ratios, including nearly equal

domain sizes, were found for other crystals in subsequent

work.

The importance of twinning has been rediscovered in the

past decade (Le Page, 2002; Hahn & Klapper, 2003). Rules

have been formulated for the detection of the effects of

twinning during structure determination (Cooper et al., 2002;

Parsons, 2003), and easy-to-use software is available for the

refinement of volume ratios of merohedral and non-merohe-

dral twin domains, such as SHELXTL (Sheldrick, 1997) and

JANA2000 (Petricek et al., 2000). If the twin elements relating

the orientations of the domains (reflections, rotations) are

known, these programs allow one to obtain reliable structural

parameters for twinned crystals. However, the twin elements

are a purely formal description in terms of symmetry and give

no answer to important questions such as the origin of twin-



ning and the interfaces between domains. Among the vast

variety of twins (Hahn & Klapper, 2003), one mechanism of

twinning appears to us to be particularly easy both to identify

and to interpret, and to occur particularly frequently, namely

twinning by faults in layer stackings. This type of twinning is

best described by OD theory (Dornberger-Schiff & Grell-

Niemann, 1961; Dornberger-Schiff & Dunitz, 1965; Dorn-

berger-Schiff, 1982), i.e. the theory of one-dimensional order–

disorder. A single isolated stacking fault may lead to a twinned

domain while the nearest-neighbor environment of the layers

remains unchanged across the planar twin boundary, giving an

intuitive explanation for the origin of twinning. Some exam-

ples with complete descriptions of this mechanism are given by

Bürgi et al. (2005). The remarkable twinning in piperazine

hexahydrate (Schwarzenbach, 1968) can also be formulated in

terms of OD theory.

We show that �-NTO is a layer structure and that its

twinning is a non-trivial, instructive example of the application

of OD theory providing a qualitative explanation of the

occurrence of twinning and of the presence of four indepen-

dent molecules per asymmetric unit, Z0 = 4. Faint rods of

diffuse scattering confirm this interpretation.

2. OD theory applied to the structure of a-NTO

In the following, we use exclusively the I-centered cell 5 of

BKP, idealized to show an exact orthorhombic metric, a =

5.1233, b = 10.314, c = 34.143 Å, � = � = � = 90�. The atomic

coordinates xo, yo, zo in the setting I1 are obtained from the

published coordinates xt, yt, zt with xo = xt � zt/2, yo = yt� zt/2,

zo = zt/2. For aesthetic reasons, we invert the signs of these

coordinates and transfer the origin to (1/2, 0, 1/2): x = 1/2� xo,

y = �yo, z = 1/2 � zo. The results show intriguing relations

between the coordinates of different NTO molecules. Very

minor shifts of the molecules by less than 0.06 Å result in the

following idealized structure:

(0, 0, 0)+ (1/2, 1/2, 1/2)+

molecule 1: �[1/2 � x, 1/2 + y, z]

molecule 2: �[x, y, z], coordinates reported in Table 1

molecule 3: �[3/4 � x, 1/4 + y, 1/4 � z]

molecule 4: �[1/4 + x, 3/4 + y, 1/4 � z].

The molecules are numbered as in BKP. The molecular

dimensions agree to within less than 1 s.u. with the average

distances and angles of BKP. The relations are local symmetry

operations; they cannot be applied repeatedly and are valid

only for a single molecule. BKP show in their Fig. 4 that

molecules 1 and 2, and likewise molecules 3 and 4, form infi-

nite flat hydrogen-bonded ribbons along a. The relations

between molecules 1 and molecules 2 are those of the 2-

periodic layer group p21/b 1 (1), the non-periodic direction

being parallel to c and the center of symmetry 1 at (0, 0, 0).

The molecules 3 and 4 at 1/4� z and those at 1/4 + z (obtained

with the� sign and the translation 1/2, 1/2, 1/2) conform to the

same layer group with 1 at (1/4, 1/4, 1/4). Fig. 1 shows a plot of

these two layers where the ‘atoms’ represent the centers of the

five-membered rings (Table 1). Fig. 2 shows the herringbone

packing of the layers looking down the ribbon axis. The

following arguments are independent of the details of the

molecular shape and the hydrogen-bonding scheme for which

the reader is referred to Fig. 4 of BKP.

Order–disorder structures arise when the layer symmetry is

local and adjacent layers are related by local symmetry

operations that cannot be repeated simultaneously to become

elements of a space group. This means that there are alter-

native positions of two adjacent layers with exactly the same

contacts (as is well known in the closest sphere packings). The

local symmetry operations relating the layer at 0 to the layer at

1/4 (Figs. 1 and 2) are:
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Figure 1
Projection of two adjacent layers of the structure onto (001), looking
down [001]. The molecules are represented by their centers; the bonds
represent the hydrogen-bonded ribbons whose planes are closely parallel
to (0 �3 13) and form an angle of 37.39� with (001). Filled and empty
circles indicate the lower and upper sides of the layers, respectively. The
layer contact is thus between empty circles of the lower layer formed by
molecules 1 and 2 at coordinate z, and the filled circles of the upper layer
formed by molecules 3 and 4 at 1/4 � z. The arrows show the polar
orientation of the ribbons, which corresponds to the direction from left to
right in Fig. 4 of BKP. The letters S, A, B, C, D indicate the local symmetry
operations relating the two layers (see text).

Table 1
Coordinates of molecule 2 in the idealized structure (see text).

The center of the five-membered ring is the average of the coordinates of N1,
N2, C3, N4 and C5.

Atom x y z

N1 �0.1466 0.0143 0.0536
N2 �0.0320 0.1125 0.0329
C3 0.2330 0.1096 0.0341
N4 0.2847 0.0018 0.0568
C5 0.0516 �0.0475 0.0671
O3 0.3904 0.1830 0.0188
N5 0.0237 �0.1618 0.0912
O5 0.2261 �0.2097 0.1031
O6 �0.1966 �0.1998 0.0978
Center 0.07742 0.03814 0.04890



(i) n glide plane at z = 1/8 between layers, translation [1/4,

�1/4, 0], moving S to A,

(ii) 21 screw at x, z = 3/8, 1/8 between layers, translation [0,

1/4, 0], moving S to B,

(iii) n-glide plane perpendicular to b at y = 5/8, translation

[�1/4, 0 1/4], moving S to C,

(iv) 21 screw parallel to c at x, y = 1/8, 7/8, translation [0, 0,

1/4], moving S to D.

Remember that the c axis spans four layers. Maximum-

degree-of-order (MDO) structures are periodic structures

with maximal space-group symmetries and are obtained by

continually repeating one local operation to the detriment of

the others (for an exact definition see Dornberger-Schiff,

1982). All interfaces between the layers in the MDOs of

�-NTO are equivalent under the resulting space-group

symmetry. Two repeatable operations to give layers at z = 1/2,

3/4, . . . are part of the layer symmetry and two relate adjacent

layers: 1, 21 along a, n perpendicular to b and 21 along c. The

other operations are not repeatable. The MDOs and twin laws

created by a single stacking fault are in the above order:

(i) I1, Z0 = 4, the observed structure. The layer symmetry

group is reduced to p1 1 (1). All interfaces between layers are

equivalent through the centers 1 at (0, 0, 0) and (1/4, 1/4, 1/4).

In contrast, the layers are not symmetry-equivalent because of

the alternating polarity of the interfaces, although they are

geometrically identical.

(ii) A2111, Z0 = 4. The layer symmetry becomes p21 1 (1).

The standard space-group symbol P1211 is obtained with the

transformation a0 = (b + c)/2, b0 = a, c0 = �c. The layers are

again not symmetry-equivalent, but the interfaces are

equivalent through the 21 screws. A stacking fault of this type

displaces a layer with respect to the published structure by a/2.

It is easy to show by generating the coordinates of the twin

domains that a single stacking fault results in a [100] twin.

(iii) B1d1, Z0 = 4. The standard space-group symbol P1c1 is

obtained with a0 = c, b0 = � b, c0 = (a � c)/2. Layers and

interfaces are symmetry-equivalent, the layer group being p1 1

(1). A stacking fault of this type displaces a layer by b/2 and

results in a [010] twin.

(iv) P1121 with c0 = c/2, Z0 = 4. Again, layers and interfaces

are symmetry-equivalent, the layer group being p1 1 (1). A

stacking fault of this type displaces a layer by (a + b)/2 and

results in a [001] twin.

Clearly, any two of the three twin laws imply the remaining

law. Diffraction patterns from OD structures contain family

reflections whose structure factors do not depend on the

stacking order. In the case of �-NTO, their indices h, k, l are all

even. In direct space, the family reflections correspond to a

superposition structure with space group Pmnn (standard

setting Pnnm) and axial lengths a/2, b/2, c/2. The reflections

with h, k, l even in the Supplementary Material of BKP indeed

show approximately the corresponding absence rules: they are

weak for hk0, (h + k)/2 odd, and for h0l, (h + l)/2 odd. These

indices refer to the orthorhombic cell and are obtained from

the triclinic indices of BKP by the transformation h = ht, k = kt,

l = ht + kt. In addition, a sufficiently disordered OD structure

may show rods of diffuse scattering through the non-family

reflections, in the present case along c* through reflections

with at least one odd index h, k. Such rods have indeed been

found for all investigated crystals. Fig. 3 shows an example

from a crystal with nearly equal volume ratios of the four

domains. This observation is a convincing argument that the

OD interpretation of the structure is correct.

3. Discussion

The OD family of the layer stacking belongs to category Ib and

its symbol (Dornberger-Schiff, 1982) is

p 21=b 1 ð1Þ�
1 21=2=n2;1=2 22=n1=2;1=2

�
;

where the glide-components along c are given in units of the

distance between layers, c0 = c/4. This family appears to be

unusual because it comprises four MDO structures (Dorn-

berger-Schiff, 1982). Fig. 2 gives a recipe for drawing the twin

boundaries. Twin domains should alternate along a single

direction with planar interfaces. All layers in the idealized

structure have identical nearest-neighbor contacts through all

twin boundaries.

The observed volume ratios of twin domains do not suggest

a marked preference for any particular twin law. However,

they are not all equal to 0.25, and they depend on the

specimen. This observation indicates that there are few
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Figure 2
Projection of the observed structure MDO1 (I1) down the ribbon axis a
on to (100). Filled and empty circles are at heights�x, 1/4� x and 1/2� x,
3/4 � x, respectively. Filled and empty bonds symbolize the polar
directions up (u) and down (d), respectively. Partial symmetry elements
of a single layer (L1) are shown in blue, and those relating adjacent layers
(L1 and L2) in green. Layers L1 and L3 are related by the I-translation
which when applied to the red layer L2 continues the structure along c.
The alternative positions of a layer equivalent with respect to its nearest
neighbors are obtained by swapping filled with empty circles (add 1/2 to
x), or/and swapping filled with empty bonds (swap + with �). Generating
subsequent layers along �c with the I-translation gives domains of
MDO1 related by the twin laws (100), (001) and (010).



isolated stacking faults resulting in relatively large twin

domains. On the other hand, the observation of diffuse scat-

tering implies the presence of many stacking faults, which in

turn should result in equal volume ratios of the twin domains.

Therefore, the crystals might exhibit not only relatively large

ordered twin domains but also very disordered layer

sequences. Indeed, the calculation of the diffuse intensities in

close analogy to the method described by Bürgi et al. (2005)

gives a qualitative indication of the presence of disordered

domains. Assuming nearest- and next-nearest-neighbor inter-

actions defined by the four probabilities p1, p2, p3 and p4 with

p1 + p2 + p3 + p4 = 1 to find stacks of three neighboring layers

according to MDO1, MDO2, MDO3 and MDO4, respectively,

gives an intensity variation of

Iðl Þ ¼ ðN=2Þ½jFðl Þj2 þ jFð�l Þj2�½ð1� w2
Þ=ð1þ w2

� 2w cos�l Þ�;

w ¼ ð�1Þhþkp1 þ ð�1Þkp2 þ ð�1Þhp3 þ p4:

N is the number of layers, |F| is the structure amplitude of a

single layer and l is the continuous coordinate along c*

referring to the distance c of four layers. The extrema of I(l)

are at l integral. The larger the maxima, the smaller are the

minima. In Fig. 3, the diffuse intensities between reflections at

l integer (h + k + l = 2n) are nearly constant but too strong to

be compatible with the high maxima. They suggest a

completely disordered structure with p1 = p2 = p3 = p4 = 1/4,

w = 0, and therefore negligible second-neighbor interactions.

I(l) depends then only on the diffraction by a single layer and

varies slowly.

The reason for the occurrence of ordered domains is surely

the fact that the observed structure is ‘relaxed’, i.e. deviates by

small shifts from the ideal model [in analogy to a proposition

for tris(bicyclo[2.1.1]hexeno)benzene by Bürgi et al. (2005)].

These relaxations may be responsible for the correlations

between second-nearest layers, rather than long-range van der

Waals interactions. One can imagine that the disordered

domains grew too fast for the structure to relax. The formation

of the observed structure in preference to the other three

MDOs is not easily explained. The center of symmetry in the

observed structure ensures that the planes of the ribbons in a

layer remain strictly parallel for any amount of relaxation,

which is not necessarily the case for the structures with screw

axes or glide planes.

Under the polarizing microscope, the domains are invisible.

The crystals look like single crystals. They are transparent only

in the c direction, looking onto the dominant faces �(001)

parallel to the layer plane. The lateral faces, principally�(100)

and �(010), have a frosted appearance. In polarized light, the

extinctions on (001) and freshly cleaved (010) are sharp. This

is not incompatible with the proposed large ordered domains.

Extinctions are sharp if the principal axes of the optical

indicatrix are parallel to the local symmetry elements, i.e. the

pseudo-orthorhombic axes a, b and c, and thus closely parallel

in all domains.

All MDOs have four independent molecules per asym-

metric unit. The reason for this is evident in this case: the

molecules in a single layer are indeed related by symmetry, but

this symmetry is lost by the stacking of the layers into the

herringbone packing of the ribbons. However, the layer

symmetry persists as local symmetry. Each molecule has two

contacts with the neighboring layer, at distances between the

centers in the idealized structure of 5.822 (1–4), 5.941 (1–3),

5.941 (2–4) and 6.161 Å (2–3), where the numbers (a–b)

designate the molecules. The distances of 5.941 Å are between

ribbons of the same polarity; the other two are between

ribbons of opposite polarity. These four contacts, involving of

course all atoms and not just the centers of the molecules, are

inequivalent and cannot be made identical by any idealization

of the structure (short of modifying the shape of the NTO

molecule). They are, however, very similar; one O atom of the

nitro group O5(b) or O6(b) of molecule b is located roughly

above the mid-point of the C5(a)–N5(a) bond of the nitro

moiety of molecule a, on a line perpendicular to the molecular

plane of a (see Fig. 3 of BKP). The distances O5(b)–N5(a) and

O5(b)–C5(a) are shorter (in the idealized structure, 2.82, 2.83

and 2.88, 2.90 Å, respectively) than the distances O6(b)–N5(a)

and O6(b)–C5(a) (3.02, 3.05 and 3.08, 3.12 Å, respectively).

4. Conclusions

We have shown that the multiple twinning of �-NTO can be

rationalized by stacking faults of identical layers. In addition

to the four domain types with different twin orientations, the

rods of diffuse intensity suggest the presence of domains with

completely disordered stacking. It is an intrinsic property of

the layer stacking that the four molecules become symme-
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Figure 3
Faint rods of diffuse intensity along c* with indices h, k not both even for
a crystal with nearly equal volume fractions for the four twin orientations.
c* is horizontal.



trically inequivalent even in the idealized structure. It is a

wonder of nature that the intermolecular contacts remain

closely similar. The symmetry of a single ribbon is p21 (a) (m),

but only the 21 axis is part of the symmetry of a layer. We have

not been able to imagine a generalized OD structure

exploiting the additional mirror symmetry where all ribbons

would have identical nearest-neighbor environments.

KK and AAP acknowledge funding from ONR, contract

No. N00014-05-1-0397.
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